Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis[diaquahydrogen(1+)] naphthalene-1,5-disulfonate

Zong-Sheng Li* and Jian-She Chai

College of Safety and Environment Engineering, Capital University of Economics and Business, Beijing 100070, People's Republic of China
Correspondence e-mail: lizongsheng@cueb.edu.cn
Received 15 May 2007; accepted 26 May 2007
Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.045 ; w R$ factor $=0.139 ;$ data-to-parameter ratio $=14.3$.

In the structure of the title compound, $2 \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-}$, the naphthalene-1,5-disulfonate anion is located on an inversion centre. Two independent water molecules share a proton via a strong hydrogen bond, giving rise to a diaquahydrogen(1+) (dihydronium) cation. Strong hydrogen bonds between the diaquahydrogen $(1+)$ cations and the sulfonate groups of the naphthalene-1,5-disulfonate anions produce a three-dimensional network.

Related literature

For related literature, see: Cai et al. (2001); Gilli et al. (2004); Lundgren \& Tellgren (1974); Skakle \& Wardell (2006); Swift et al. (1998); Zhang et al. (2005).

Experimental

Crystal data

$2 \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-}$
$V=731.46(3) \AA^{3}$
$M_{r}=360.35$
Monoclinic, $P 2_{1} / c$
$Z=2$
$a=11.4131$ (3) \AA
Mo $K \alpha$ radiation
$b=9.0543$ (2) \AA
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=298$ (1) K
$c=7.1957$ (1) \AA
$\beta=100.3616(8)^{\circ}$

Data collection
Bruker SMART 1000 CCD areadetector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.868, T_{\text {max }}=0.921$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.139 \quad$ independent and constrained
$S=1.23$ refinement
1663 reflections
116 parameters
4 restraints

2955 measured reflections 1663 independent reflections 1508 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.014$
$\Delta \rho_{\text {max }}=0.89 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.56 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 W-\mathrm{H} 2 \cdots \mathrm{O}^{\text {i }}$	0.850 (18)	1.793 (19)	2.634 (2)	170 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 \cdots \mathrm{O} 2$	0.816 (18)	1.84 (2)	2.642 (2)	166 (4)
$\mathrm{O} 1 W-\mathrm{H} 5 \cdots \mathrm{O} 2 W$	1.07 (4)	1.36 (4)	2.419 (3)	173 (3)
$\mathrm{O} 2 W-\mathrm{H} 4 \cdots \mathrm{O}^{1 i}$	0.805 (18)	1.87 (2)	2.656 (2)	166 (4)
$\mathrm{O} 2 W-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {iii }}$	0.788 (18)	1.96 (2)	2.730 (2)	163 (4)

Data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1994); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The authors acknowledge the financial support of the Capital University of Economics and Business Science Foundation.

[^0]
References

Cai, J., Chen, C.-H., Liao, C.-Z., Feng, X.-L. \& Chen, X.-M. (2001). Acta Cryst. B57, 520-530.
Gilli, P., Bertolasi, V., Pretto, L., Ferretti, V. \& Gilli, G. (2004). J. Am. Chem. Soc. 126, 3845-3855.
Lundgren, J.-O. \& Tellgren, R. (1974). Acta Cryst. B30, 1937-1947.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Skakle, J. M. S. \& Wardell, J. L. (2006). Acta Cryst. E62, o1402-o1404.
Swift, J. A., Pivovar, A. M., Reynolds, A. M. \& Ward, M. D. (1998). J. Am. Chem. Soc. 120, 5887-5894.
Zhang, X.-L., Ye, B.-H. \& Chen, X.-M. (2005). Cryst. Growth Des. 5, 16091616.

supplementary materials

Bis[diaquahydrogen(1+)] naphthalene-1,5-disulfonate

Z.-S. Li and J.-S. Chai

Comment

Bifunctional organosulfonates are versatile building blocks for supramolecular assembly and functional materials (Swift et al., 1998). A number of organic and metal-organic networks based on naphthalene-1,5-disulfonic acid have been documented (Cai et al., 2001; Zhang et al., 2005), however, its structure of itself has not been reported. We here describe the crystal structure of a $\left(\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}\right)_{2} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-}$ (I), whose molecular structure is illustrated in Figure 1.

In the structure of (I), each naphthalene-1,5-disulfonate anion lies on an inversion center and crystallizes with four water molecules. The sulfonic acid groups are deprotonated with the H atoms transferred to the water molecules. In the current study, despite being run at room temperature, the data quality was sufficient to locate the hydrogen atoms on the water molcules in the difference density Fourier map, and the position of the proton found to be shared between O1W and O2W was allowed to refine freely. The two independent water molecules are strongly hydrogen bonded, forming a diaquahydrogen(1+) $\left(\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}\right)$cation. The $\mathrm{O} \cdots \mathrm{O}$ distance of the hydrogen bonded atoms O 1 W and O 2 W is about 2.419 (3) \AA, which is very strong and falls into the range of very short hydrogen bonds $\left(<2.50 \AA\right.$) (Gilli et al., 2004). The geometry of the $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cation is in agreement with that found in other X-ray and neutron studies (e.g. Lundgren \& Tellgren, 1974; Skakle \& Wardell, 2006): the $\mathrm{O}-\mathrm{H}$ distances $\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 5$ and $\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 5$ for the shared hydrogen atom (see the hydrogen bonding table) are tentatively in agreement with those found in neutron studies, and the associated hydrogen bond between the water molecules is nearly linear, with the $\mathrm{O}-\mathrm{H}-\mathrm{O}$ angle equal to $173(3)^{\circ}$. One diaquahydrogen $(1+) \mathrm{O}$ atom is pyramidial, with $\mathrm{O} 1 \mathrm{~W} 0.26(3) \AA$ out of the plane formed by atoms $\mathrm{H} 1, \mathrm{H} 2$ and H 5 , while the other O atom is almost coplanar, with O 2 W deviating 0.058 (3) \AA from the plane formed by $\mathrm{H} 3, \mathrm{H} 4$ and H 5 .

Each sulfonic acid group of naphthalene-1,5-disulfonate is involved in four additional hydrogen bonds with four adjacent $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cations. O 1 and O 3 form a single hydrogen bond with O 1 W and O 2 W , respectively, and O 2 participates in hydrogen bonds with both O1W and O2W. In this way, the diaquahydrogen $(1+)$ cations are connected into a three-dimensional network (Fig. 2). There are also $\pi-\pi$ interactions between the adjacent $\mathrm{C} 2-\mathrm{C} 3$ edges of naphthalene rings with an interplanar distance of 3.41 (3) \AA.

Experimental

naphthalene-1,5-disulfonic acid tetrahydrate was obtained from Aldrich. The crystal of 1 was obtained by recrystallizing naphthalene-1,5-disulfonic acid tetrahydrate from water.

Refinement

All non-H atoms were refined anisotropically. The H atoms on naphthalene are visible on difference maps. All hydrogen atoms on carbon were treated as riding atoms with $\mathrm{C}-\mathrm{H}$ distances of $0.93 \AA$ and $U_{\mathrm{iso}}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$, while hydrogen atom on water were located from difference Fourier electron maps. The position of the shared hydrogen has been refined freely,

supplementary materials

while the other water hydrogen atoms have been restrained to have an $\mathrm{O}-\mathrm{H}$ distance of $0.82 \AA$ within a standard deviation of $0.02 \AA$ (DFIX command in SHELXTL). All water hydrogen atoms have been set to have an isotropic displacement parameter $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})$ of the adjacent oxygen atom.

Figures

Fig. 1. A view of compound (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 35% probability level. Unlabeled atoms are generated by the symmetry operator $-x+2,-y+1,-z+1$.

Bis[diaquahydrogen(1+)] naphthalene-1,5-disulfonate

Crystal data

$2 \mathrm{H}_{5} \mathrm{O}_{2}{ }^{+} \cdot \mathrm{C}_{10} \mathrm{H}_{6} \mathrm{O}_{6} \mathrm{~S}_{2}{ }^{2-}$
$M_{r}=360.35$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=11.4131$ (3) \AA
$b=9.0543$ (2) \AA
$c=7.19570(10) \AA$
$\beta=100.3616$ (8$)^{\circ}$
$V=731.46(3) \AA^{3}$
$Z=2$
$F_{000}=376$
$D_{\mathrm{x}}=1.636 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 2955 reflections
$\theta=1.8-27.5^{\circ}$
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=298$ (1) K
Block, colourless
$0.38 \times 0.28 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART 1000 CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scans

1663 independent reflections
1508 reflections with $I>2 \sigma(I)$
$R_{\mathrm{int}}=0.014$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\text {min }}=1.8^{\circ}$

Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.868, T_{\max }=0.921$
2955 measured reflections

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.139$
$S=1.23$
1663 reflections
116 parameters

4 restraints

$h=-14 \rightarrow 14$
$k=-11 \rightarrow 9$
$l=-9 \rightarrow 9$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0831 P)^{2}+0.1778 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.89 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.55$ e \AA^{-3}
Extinction correction: SHELXTL (Sheldrick, 1997), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.157 (17)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.72534(4)$	$0.40836(5)$	$0.24522(6)$	$0.0265(3)$
O3	$0.67842(12)$	$0.26056(17)$	$0.2033(2)$	$0.0377(4)$
O2	$0.65410(12)$	$0.48997(16)$	$0.3626(2)$	$0.0326(4)$
C1	$0.87082(15)$	$0.3872(2)$	$0.3797(3)$	$0.0247(4)$
O1	$0.73865(14)$	$0.49259(19)$	$0.0794(2)$	$0.0399(4)$
C2	$0.91527(17)$	$0.2467(2)$	$0.4037(3)$	$0.0292(4)$
H2B	0.8683	0.1666	0.3558	0.035^{*}
C3	$1.03252(17)$	$0.2237(2)$	$0.5012(3)$	$0.0324(4)$
H3B	1.0625	0.1281	0.5174	0.039^{*}
C5	$1.05931(15)$	$0.4870(2)$	$0.5490(2)$	$0.0249(4)$
C4	$1.10203(16)$	$0.3395(2)$	$0.5716(3)$	$0.0295(4)$

H4A	1.1790	0.3221	0.6358	0.035^{*}
O2W	$0.6544(3)$	$0.9245(2)$	$0.2265(3)$	$0.0685(7)$
O1W	$0.52651(15)$	$0.70960(19)$	$0.1890(3)$	$0.0448(4)$
H4	$0.669(3)$	$0.958(4)$	$0.332(3)$	0.067^{*}
H1	$0.563(3)$	$0.635(3)$	$0.225(5)$	0.067^{*}
H5	$0.583(3)$	$0.804(4)$	$0.216(5)$	0.067^{*}
H3	$0.665(3)$	$0.961(4)$	$0.131(3)$	0.067^{*}
H2	$0.463(2)$	$0.720(4)$	$0.235(5)$	0.067^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0220(3)$	$0.0290(3)$	$0.0268(3)$	$-0.00021(15)$	$-0.0001(2)$	$-0.00117(15)$
O3	$0.0284(7)$	$0.0333(8)$	$0.0484(9)$	$-0.0033(6)$	$-0.0016(6)$	$-0.0084(6)$
O2	$0.0260(7)$	$0.0362(8)$	$0.0353(7)$	$0.0056(5)$	$0.0045(5)$	$-0.0002(6)$
C1	$0.0198(8)$	$0.0283(9)$	$0.0250(9)$	$0.0001(7)$	$0.0017(7)$	$-0.0008(6)$
O1	$0.0374(9)$	$0.0514(9)$	$0.0290(8)$	$-0.0007(7)$	$0.0008(6)$	$0.0068(6)$
C2	$0.0270(9)$	$0.0269(9)$	$0.0332(10)$	$-0.0015(7)$	$0.0037(7)$	$-0.0011(7)$
C3	$0.0304(10)$	$0.0261(9)$	$0.0395(10)$	$0.0040(7)$	$0.0032(8)$	$0.0019(7)$
C5	$0.0216(9)$	$0.0267(9)$	$0.0257(9)$	$0.0012(7)$	$0.0025(7)$	$0.0013(6)$
C4	$0.0232(9)$	$0.0284(9)$	$0.0352(10)$	$0.0036(7)$	$0.0008(7)$	$0.0019(7)$
O2W	$0.1107(19)$	$0.0603(13)$	$0.0304(10)$	$-0.0399(12)$	$0.0014(11)$	$0.0016(8)$
O1W	$0.0365(9)$	$0.0366(9)$	$0.0593(10)$	$0.0078(7)$	$0.0034(7)$	$0.0024(8)$

Geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{O} 1$	$1.4472(15)$
$\mathrm{S} 1-\mathrm{O} 3$	$1.4527(15)$
$\mathrm{S} 1-\mathrm{O} 2$	$1.4722(14)$
$\mathrm{S} 1-\mathrm{C} 1$	$1.7755(18)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.369(3)$
$\mathrm{C} 1-\mathrm{C} 5$	$1.431(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.410(3)$
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	0.9300
$\mathrm{C} 3-\mathrm{C} 4$	$1.357(3)$
$\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	0.9300
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 3$	$113.81(9)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{O} 2$	$111.06(9)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{O} 2$	$111.13(9)$
$\mathrm{O} 1-\mathrm{S} 1-\mathrm{C} 1$	$106.25(9)$
$\mathrm{O} 3-\mathrm{S} 1-\mathrm{C} 1$	$106.70(8)$
$\mathrm{O} 2-\mathrm{S} 1-\mathrm{C} 1$	$107.47(8)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	i
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{S} 1$	$121.64(16)$
$\mathrm{C} 5{ }^{\mathrm{i}}-\mathrm{C} 1-\mathrm{S} 1$	$117.25(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$121.02(13)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	$119.79(17)$
	120.1

C5-C4	1.421 (2)
C5-C5 ${ }^{\text {i }}$	1.429 (3)
C5-C1 ${ }^{\text {i }}$	1.431 (2)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9300
O2W-H4	0.805 (18)
O2W-H5	1.36 (4)
O2W-H3	0.788 (18)
O1W-H1	0.816 (18)
O1W-H5	1.07 (4)
O1W-H2	0.850 (18)
C2-C3-H3B	119.7
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 5^{\text {i }}$	119.1 (2)
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 1^{\text {i }}$	123.33 (16)
C5 ${ }^{\mathrm{i}}-\mathrm{C} 5-\mathrm{C} 1^{\mathrm{i}}$	117.6 (2)
C3-C4-C5	121.22 (17)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	119.4
C5-C4-H4A	119.4
$\mathrm{H} 4-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 5$	112 (3)
$\mathrm{H} 4-\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 3$	129 (4)
H5-O2W-H3	118 (3)
H1-O1W-H5	110 (3)

sup-4

supplementary materials

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	120.1	$\mathrm{H} 1-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2$	$113(4)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.68(18)$	$\mathrm{H} 5-\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2$	$112(3)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	119.7		

Symmetry codes: (i) $-x+2,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots \mathrm{A}$	$D-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 \mathrm{~W}-\mathrm{H} 2 \cdots \mathrm{O} 3^{\mathrm{ii}}$	0.850 (18)	1.793 (19)	2.634 (2)	170 (4)
O1W-H1 ${ }^{\text {W }}$ O	0.816 (18)	1.84 (2)	2.642 (2)	166 (4)
O1W-H5 $\cdots 2 \mathrm{O}$	1.07 (4)	1.36 (4)	2.419 (3)	173 (3)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 4 \cdots \mathrm{O} 1^{\mathrm{iii}}$	0.805 (18)	1.87 (2)	2.656 (2)	166 (4)
$\mathrm{O} 2 \mathrm{~W}-\mathrm{H} 3 \cdots \mathrm{O} 2^{\text {iv }}$	0.788 (18)	1.96 (2)	2.730 (2)	163 (4)

Symmetry codes: (ii) $-x+1, y+1 / 2,-z+1 / 2$; (iii) $x,-y+3 / 2, z+1 / 2$; (iv) $x,-y+3 / 2, z-1 / 2$.

supplementary materials

Fig. 1

Fig. 2

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2026).

